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ABSTRACT

Graphical representations popularly thought to be useful for communicating and processing
information yield mixed results when tested with real users. Cognitive research suggests that
graphic design methodologies that focus primarily on the information to be presented in a graphic
fail to exploit the potentials of graphics for expediting human performance of
information-processing tasks: (a) allowing users to substitute efficient visual operators in place of
more demanding logical operators; and (b) streamlining users' search for needed information. BOZ
is a graphic design and presentation tool that constructively applies task-analytic principles of the
efficiencies that graphics can offer to the problem of designing novel graphics that help streamline
user tasks. BOZ analyses a procedural description of a user task and derives a provably equivalent
visual task by substituting visual operators in place of logical operators. BOZ automatically
designs and renders an accompanying graphic, encoding data in the graphic such that performance
of each visual operator is supported-and visual search is minimized. Graphics produced by BOZ
are static 2D images that support interactive manipulations of the graphical objects in a display to
allow direct modification of the internally stored information that the graphic depicts. BOZ is used
to design a graphical alternative to a standard tabular display of airline schedule information to
support an airline reservation task Reaction time studies done with real users show that the
BOZ-designed display significantly educes users performance time to the task. Regression
analyses link the observed efficiency s ings to BOZ's two key design principles: visual operator
substitutions and pruning of visual search
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A Task-Analytic Approach to the Automated Design
of Information Graphics

STEPHEN CASNER

University of Pittsburgh

Graphical representations popularly thought to be useful for communicating and processing information

yield mixed results when tested with real users. Cognitive research suggests !hat graphic design

methodologies that focus primarily on the information to be presented in a graphic fail to exploit the

potentials of graphics for expediting human performance of information-processing tasks: (a) allowing users

to substitute efficient visual operators in place of more demanding logical operators; and (b) streamlining

users' search for needed information. BOZ is a graphic design and presentation tool that constructively

applies task-analytic principles of the efficiencies that graphics can offer to the problem of designing novel

graphics that help streamline user tasks. BOZ analyzes a procedural description of a user task and derives a

provably equivalent visual task by substituting visual operators in place of logical operators. BOZ

automatically designs and renders an accompanying graphic, encoding data in the graphic such that

performance of each visual operator is supported and visual search is minimized. Graphics produced by

BOZ are static 2D images that support interactive manipulations of the graphical objects in a display to

allow direct modification of the internally stored information that the graphic depicts. BOZ is used to

design a graphical alternative to a standard tabular display of airline schedule information to support an

airline reservation task. Reaction time studies done with real users show that the BOZ-designed display

significantly reduces users' performance time to the task. Regression analyses link the observed efficiency

savings to BOZ's two key design principles: visual operator substitutions and pruning of visual search.

Categories and Subject Descriptors: D.2.2 (Software Engineering]: Tools and Terhniques--user
interfaces; H.1.2 (Models and Principles]: User/Machine Systems--human informiLkn processing;
1.2.1 [Artificial Intelligence]: Applications and Expert Systems; 1.3.6 [Comriter Graphics]:
Methodology and Techniques--ergonomics.

General Terms: Design, Human Factors, Algorithms, Theory.

Additional Key Words and Phrases: graphic design, task analysis, perception, visual languages, user
interface.

1. THE COGNITIVE FUNCTION OF GRAPHICAL DISPLAYS

A striking conclusion of recent studies concerned with understanding how and why

graphical representations are useful is that it is a false assumption that graphical displays are

inherently better than other representations, or that perceptual inferences are always made

Subrrted to ACM Transadions on Graphics



more efficiently than non-perceptual inferences [ 18, 23]. Rather, these studies suggest that

the usefulness of a graphic is a function of the task that the graphic is being used to

support. Twenty-nine independent empirical studies surveyed in Jarvenpaa and Dickson

[181 found graphical displays superior to tabular displays for a restricted set of information-

processing tasks, and observed no benefits or poorer performance for other tasks.

Examples of graphics that succeed in practice are best explained as "situationally dependent

artifacts [181" whose success arises out of the combination of task performed and the

particular graphic used. Generalizations made about the observed usefulness of a graphic

for one task are highly inappropriate since using the same graphic for different tasks

typically cause the usefulness of the graphic to disappear. Consequently, graphic design

principles such as "line graphs are best for continuous data" are too underspecified to be

useful in general. That is, empirical studies have shown that line graphs are supportive of

some tasks that manipulate continuous data and are detrimental to the performance of

others. The implication is that effective graphic design should begin with the task that a

graphic is intended to support, and be focused on finding those parts of a task, if any, that

might be performed more efficiently within the context of a graphical display.

Larkin and Simon's [23] theoretical analysis points out two ways in which graphical

displays can expedite human performance of information-processing tasks:

- Substituting visual operators for logical operators: Graphical displays

often allow users to substitute quick and easy perceptual judgements (visual

operators) in place of more demanding non-visual reasoning steps (logical

operators) that comprise a task. Visual operators such as distance and size

determinations, spatial coincidence judgements, and color comparisons, sometimes

give users the same information as more demanding logical operators such as

mental arithmetic, logical reasoning steps, or feature comparisons.

* Reducing search: Good graphics often reduce the time that the user must

spend searching for information they need. This is accomplished either by

grouping together information required to draw a particular inference into one

spatial locality, or by employing techniques such as shading and spatial

arrangement that help guide the eye toward relevant information and away from

irrelevant information.
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To illustrate the two ways that graphical displays can help users, Figure 1 shows a graphic

used for train schedules in France in the late 1800's [26].

Figure 1 here

Marcy's train schedule is a 2-dimensional visual data structure that indexes time and place

information along the horizontal and vertical axes, respectively. To retrieve departure and

arrival times for a train, the user must perform coincidence judgements along the horizontal

axis. Note that for this simple task in isolation, the train schedule does not result in any

savings for the user. Searching for departure and arrival times in a tabular presentation

such as Figure 2 would seem to progress as quickly and perhaps more accurately.

Consequently, with respect to the task of retrieving departure and arrival times, allowing

users to substitute spatial coincidence judgements for table lookup seems to be of no use in

that it may be both inefficient to use and prone to errors due to the imprecise representation

of times. The empirical studies generalize this to show that in most cases tabular

representations are best for "information extraction" tasks [18], and thus there seem to be

no inherent advantages of representing information graphically.

Figure 2 here

When used for other tasks, the graphical train schedule offers several advantages by

allowing the user to substitute visual operators in place of more difficult logical operators

that would ordinarily require logical reasoning and mental arithmetic, and reducing the time

the user must spend searching for information. For example, to find a route between Paris

and Lyon we can search for a single line that runs directly from Paris to Lyon, or find a

series of lines such that each successive line lies to the right of the previous line. The

savings in search time is achieved because of the way the graphical display indexes the

trains by city and time. Notice that accomplishing this same task with the tabular display

requires that we continually search the entire list of trains since they are not indexed by city.

We can also determine the speed of a train by judging the slope of the line between cities.

Rather than dividing the total number of miles traveled by the difference of the departure

and arrival times, we can compare the speeds of trains by performing simple slope

judgements. We can determine the layover between two trains in an intermediate city by

estimating the distance between the end of the line depicting the first train and the beginning
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Origia/Dsduiatims Departs Azrlw

Paris-Montreaux 8:00 9:15
Dijon- Lyon 9:00 11:15

(ontreauz-Macon 9:45 11:30
Paris-Dijon 11:30 1:30

Mdacon-Lyon 11:45 12:45

Pais-Lyon 12:30 6:30

Dijon-Lyon 2:30 4:15

)Lont-eauz-Dijon 3:30 4:30

Paris-Dijon 4:30 6:15

Dijon-Lyon 5:30 6:30

Pils-Lyon 6:00 M0:1

Montreaux-hMacon 8:30 11!30
Parts-Montreaux 9:30 10:30

Macon-Lyon 10:45 11:45

Figure 2: A Tabular Train Schedule



of the line that depicts the second train. This convention allows the user to substitute a

simple distance judgement in place of subtracting the departure and arrival times.

Note that a different user who wishes to understand the route structure of French trains
would find both of the displays shown in Figures 1 and 2 cumbersome and would benefit

most from the graphic shown in Figure 3. This structuring of the data trades away the

departure/arrival time capabilities to allow users to find a city quickly (indexed by

geographical location), and to determine routes by performing connectivity judgements

between the city names.

Figure 3 here

In summary, the three alternative ways of presenting the same information show that

different graphics best support different tasks. Consequently, effective graphical displays
are not likely to follow from a design methodology concerned primarily with the

information to be displayed but rather from a careful analysis of the tasks that manipulate

the information.

Overview. The research described in this paper explores an approach to the design of

information graphics based on an analysis of the tasks for which they are intended to

support. The design approach is implemented in an automated graphic design and
presentation tool called BOZ. The core idea behind BOZ can be summarized as follows:

since the potential advantages of graphics are task-related, graphic design activities should

focus on designing efficient visual tasks. Decisions made about how to encode and
structure information in an accompanying graphic should be based primarily on supporting
efficient and accurate performance of the visual task. The enabling step in the task-analytic

approach is to capture the notion of a visual task performed by human users using the same

formal framework used to describe arbitrary computational processes, allowing design

decisions to follow formal criteria.

Section 2 reviews previous work related to the problem of de.igning information graphics.

Section 3 overviews the four main components of BOZ and introduces a running example

used throught the paper to describe BOZ's approach. Sections 4 through 7 describe in

detail the four components of BOZ's design methodology. Section 4 shows how sets of

alternative visual procedures can be derived from a logical procedure by substituting visual
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operors in place of logical operators when the logical and visual operators can be shown

to yield the same result. Section 5 shows how an analysis of the relationships between task

operators can be used to determine how information can be structured within a graphic such

that visual search is minimized when users perform a visual procedure. Section 6 describes

three criteria used by BOZ when selecting a single visual procedure and graphic design that

best supports performance of the user's task. Section 7 describes an automated rendition

component that graphically renders arbitrary sets of relational facts using the prescribed

graphic design. Section 8 uses Larkin and Simon's theoretical criteria to analyze a visual

procedure and graphic designed by BOZ. The analysis produces a set of specific

-hypotheses about the potential task performance efficiencies of the BOZ-designed

procedure and graphic. Finally, Section 9 reviews an experiment reported in Casner and

Larkin [7] in which participants performed the visual procedure using a series of

accompanying experimental graphics. The experimental graphics were designed to

explicate the contribution made by each efficiency advantage hypothesized. Results show

significant decreases in users' performance times and suggest that users obtained the

efficiency savings through the hypothesized visual operator substitutions and visual search

reductions.

2. PREVIOUS WORK
The following surveys theoretical and empirical work concerned with the problem of

designing effective graphics.

2.1 Graphic Design Practices
Tufte [32], Bertin [2], Cleveland [10], and Schmid [28] describe practices for designing

graphical displays for the purpose of communicating information. These practices help

designers to make use of graphic techniques that have been observed to help users, and to

avoid bad practices known to make graphics ambiguous, confusing, or generally less

usable. There are three basic limitations of the design practices approach. First, taken
together, the graphic design practices do not comprise a top-down, prescriptive theory of

how to begin designing a graphic from scratch. Second, the graphic design practices focus

mainly on the information to be presented in a graphic and include less concern for the

tasks for which the graphics are designed to support. Third, the graphic design practices

are concerned mainly with graphics used for the purpose of communicating information to

the user. This focus overlooks the potential of graphics as tools for supporting the

performance of complex information-processing tasks.

Submitted to ACM Transactions on Graphics



2.2 Automated Graphical Presentation Systems

APT [25] is an automated graphic presentation tool that designs non-interactive graphical

presentations of relational information. A significant contribution of APT was to formally

characterize something that many previous investigators informally alluded to: that

graphical presentations can be expressed as sentences in a formal graphical language that

have the same precise syntax and semantics as propositional formalisms. The advantage of

having a formalism for graphical presentations is that it provides a set of criteria for

deciding the role of each visible sign or symbol placed in a graphic, and improves the

integrity of a graphical display by using formal methods for transforming relational facts to

visual facts. APT's style of analysis for formal graphical languages has been used by

nearly every graphics presentation tool designed after APT, including the one described in

this paper. A second contribution of APT is that, unlike proposals for graphic design

practices, APT designs graphics with a minimum amount of intervention on the part of the

designer. That is, APT embodies a genuinely prescriptive theory of how to design a

graphic. However, APT's design algorithm is based entirely on an analysis of the

information to be presented and does not consider the task for which a graphic is to be

used. This prevents APT from directly exploiting the task-related advantages of graphics,

and from creating different displays of the same information to support different tasks.

SAGE [27] is a hybrid, text and graphics presentation system that generates explanations of

changes that occur in quantitative modeling systems such as project modeling systems and

financial spreadsheets. Graphical presentations are designed by SAGE in response to

information queries made by the user. Through an analysis of user queries, SAGE's

design of graphical presentations is sensitive to the goals of the user, taking an important

step toward exploiting the task-related advantages of graphics. SAGE presently contains

only a small set of primitive problem-solving operators and is not able to fashion displays

to support complex information-processing tasks involving combinations of many primitive

operators. SAGE does not make use of any theory of display-based problem solving when

designing a display to support a user's task.

AIPS [36] accepts descriptions of information encoded using the KL-ONE [3] knowledge

representation language. AIPS matches the KL-ONE descriptions against a set of pre-

defined display formats and chooses that format that best matches the characteristics of the

data. AIPS is not able to design new graphical displays.

Submitted to ACM Transactions on Graphics 6



BHARAT [151 accepts descriptions of data sets and chooses one of bar chart, pie chart,

and line chart to present relations between the data. The display format chosen is

determined by the characteristics of the data: line charts are used for continuous data, pie

charts for proportional data, and bar charts for all others. Like AIPS, BHARAT chooses

among existing displays rather than designing new ones.

VIEW [141 creates graphical presentations of information about ships maintained in a naval

database. VIEW's knowledge base contains information about particular users, a set of

tasks for the domain, and a set of pre-defined KL-ONE descriptions of possible
presentation formats. By matching users' identities, tasks, and queries against the

presentation format descriptions, VIEW is able to present different graphics in different

contexts. As with AIPS and BHARAT, VIEW does not design its presentation formats.

APEX [13] creates graphical explanations of actions performed with physical devices in a

3-dimensional world. Explanations are created by presenting sequences of static images

depicting the individual steps in an action. APEX uses hierarchical descriptions of the

objects that can appear in an explanation, where each level in the hierarchy contains more

detailed features of the object. A second mechanism allows APEX to determine how much

detail is needed at each step and to display only that information. Since the objects that

appear in explanations are highly domain-specific, they must be hand-created prior to using

APEX.

2.3 Cognitive Research on the Utility of Graphics
Larkin and Simon's work [23] was first to study the utility of graphics from a cognitive

science perspective. Larkin and Simon built detailed cognitive simulations of human task

performance, each simulation performing a task using informationally equivalent logical

and graphical representations of a set of data. Larkin and Simon's analysis yielded two
ways in which graphical display-based procedures could be performed more efficiently by

humans: (1) by allowing users to substitute quick visual operators for more demanding

logical operators; and (2) by reducing search for needed information.

Several more recent studies have investigated other cognitive utilities of graphical displays.
Hegarty and Just [16] studied the use of diagrams in understanding complex machines and

showed diagrams to be effective in reducing the amount of information that must be

maintained in short-term memory. Fallside [12] investigated how learners make use of

animated explanations similar to those produced by Feiner's APEX program when

Submitted to ACM Transactions on Graphics 7



understanding complex machines. Koedinger and Anderson's work [22] suggests that
students are better able to learn and apply the rules of geometry when the rules are
explained to them in terms of the way they can be applied to particular configurations of
lines and angles in geometry diagrams.

In short, cognitive research has served to replace intuitive notions of why graphics are

useful with a more scientific understanding of how graphics leverage human performance

of information-processing tasks. A new generation of graphic design techniques is now

possible that focuses on studying users' tasks and determining ways to support those tasks

in the context of a visual display. The research described below is the first to approach the

graphics design problem from a task perspective, placing less emphasis on analyses of the

information to be presented in a graphic.

3. BOZ: TASK-ANALYTIC DESIGN OF INTERACTIVE INFORMATION GRAPHICS

The following describes a graphic design methodology used to create interactive graphical
presentations of relational information based on an analysis of the tasks that a graphic is

intended to support. The graphic design theory is articulated in an automated graphic

design and presentation tool called BOZ. BOZ's design activities focus on designing visual

procedures, to be performed by human users, that allow users to accomplish a stated goal

more efficiently than they would be able to without the benefit of a graphical display.

BOZ's task-analytic approach uses the following four components.

A visual operator substitution component analyzes descriptions of logical procedures,

substituting visual operators in place of logical operators when the operators can be shown
to produce the same output given the same input. Visual operator substitution is the

mechanism used to reduce the amount of mental computation performed by the human user

when performing a task. Several visual operators typically qualify as substitutes for each

logical operator, yielding a set of possible visual procedures.

A visual data structuring component examines the information manipulated by each
!ogical operator and determines how information shared by several operators should be
collected together in the same spatial locality. Visual data structuring is one mechanism
used to minimize the amount of time the user spends searching for information in a graphic.

The visual data structuring component indicates how information is to be grouped within a
display or partitioned among distinct displays but does not determine how the information

is to be visually encoded in the graphic.

Submitted to ACM Transactions on Graphics 8



A visual operator selection component chooses a single visual operator from the list of

possible visual operators produced by the visual operator substitution component. The first

criteria for operator selection is how efficiently and accuately each visual operator is likely

to be performed by human users. Selecting each particular visual operator also decides the

way that the information manipulated by that operator (and related operators) must be

visually encoded in a graphic. A second criteria for operator selection is choosing a

complete set of visual operators that results in a set of graphical encodings that can be

combined according to the specification produced by the visual data structuring component.

The results of applying the visual operator selection component are detailed descriptions of

a single visual procedure and an accompanying graphic design that supports the

performance of the visual procedure. Together, the visual data structuring and operator

selection components allow BOZ to visually organize and present information in novel

ways, customized to a visual task, rather that choosing from a set of "canned" graphic

designs.

A rendering component translates relational facts into visual facts and displays them on

the computer screen in the format specified by the visual data structure description.

Graphics produced by the rendering component support two-way interactions that allow

changes made in the internally-stored relational facts to be automatically reflected in the

graphical display, and direct manipulations of the graphical objects in the display to be

reflected in the internal set of relational facts.

The next four sections describe BOZ's four components in detail. To illustrate how BOZ

works, a running example will be developed throughout the discussion. In the example, a

visual display will be designed to support the following task pertaining to making a

reservation on an airline flight:

Find a pair of connecting flights that travel from Pittsburgh to Mexico City. You

are free to choose any intermediate city as long as the layover in that city is no more

than four hours. Both flights that you choose must be available. The combined

cost of theflights cannot exceed $500.

Figure 4 shows a computer flight information display obtained from a local travel agency.

Travel agents use the display in Figure 4 to assist them in processing customers requests

for flights. The purpose of the running example used throughout the paper is to show how

Submitted to ACM Transactions on Graphics 9



BOZ can be used to analyze a real-world task and design a visual procedure and

accompanying display to help users accomplish the same task more efficiently.

Figure 4 here

4. VISUAL OPERATOR SUBSTITUTION

The visual operator substitution component analyzes descriptions of logical procedures

substituting perceptual operators in place of logical operators. Visual operator substitution

is the graphic design technique used to insure that a graphical display best exploits the first
type of cognitive advantage of graphics: that users can substitute efficiently performed
perceptual inferences in place of more demanding logical inferences. The visual operator
substitution component produces a set of visual operators that can potentially serve as
substitutes for each logical operator. Decisions about which particular visual operator to
substitute for each logical operator are subject to further design criteria described in Section

6.

Visual operator substitution relies on three important components. A logical task

description language is used to enumerate the logical operators necessary to complete a

task, and a set of relational facts that are manipulated by the operators. A catalog of visual

operators describes information-processing activities that occur within the context of a

visual display. A substitution algorithm considers each logical operator in a task and

searches the catalog of visual operators for those visual operators that compute the same

function as the logical operator. Since there are often several perceptual operators that

qualify as substitutes for a logical operator, the visual procedure derivation component

produces a set of possible visual procedures that accomplish the logical task.

4.1 Logical Procedure Description Language

The first component of any task-oriented design methodology is a means of making explicit
the information-processing activities that a display is intended to support. The following
describes the language used to describe tasks performed by the user. These descriptions
must presently be generated by hand and submitted to BOZ as input. Section 10 discusses

prospects for the machine generation of task descriptions. The language contains two basic
components: (a) a notation for describing logical procedures; and (b) a notation for
expressing relational facts manipulated by a logical procedure.

Submitted to ACM Transactions on Graphics 10
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Logical procedure definitions are similar to programs in conventional programming

languages such as Pascal. Every logical procedure contains two parts: (a) a set of logical

operator definitions; and (b) a main body. A logical operator (LOP) is composed of an

operator name, a list of arguments taken as input to the operator, and a single relation that

the operator computes. Logical operators occur in two forms. A search operator uses one

of the three meta-commands: ASK, TELL, and RETRACT to query, assert, and remove
relational facts from a simple database of relational facts. Relationalfacts contain a single

predicate followed by any number of arguments. Predicates describe relations between two
or more relational arguments. Arguments are variables that can be assigned relational

- values drawn from the collection of domain sets (explained below) defined for a task. In

LOP definitions, arguments are indicated by the name of a domain set enclosed in brackets

(i.e., "< >"). Arguments may be instantiated or uninstantiated. Uninstantiated arguments,
i.e., variables that have not yet been assigned a value, are capitalized. Instantiated

arguments are variables that were previously uninstantiated but have since been assigned a

relational value. Instantiated arguments appear in lower case. Note that the same argument
may be uninstantiated in one clause, be assigned a value, and appear in lower-case form

(i.e., instantiated) in a later clause. A computation operator describes computations

performed on a set of relational arguments using one of a set of pre-defined arithmetic or
logical predicates such as PLUS, DIFFERENCE, AND, OR, NOT, etc. Note that only
instantiated arguments may appear in a computation operator.

The following examples describe two logical operators in the airline reservation procedure.

The two operators determine the departure time of an airline flight (search), and the layover

between two flights (computation), respectively:

(NLAMBDA determine-departure (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA compute-layover (<departure> <arrival> <LAYOVER>)
(DIFFERENCE <departure> <arrival> <LAYOVER>))

The keyword NLAMBDA is used to denote a logical operator. The lists (<flight>

<DEPARTURE>) and (<departure> <arrival> <LAYOVER>) are the sets of

arguments that the two operators receive as input. The ASK predicate states that a list of

facts should be checked to see if the predicate that follows can be shown to be true: namely
if there exist a fact expressing the departure time of the flight. The clause (DIFFERENCE

<departure> <arrival>) specifies that the pre-defined subtraction predicate is to be
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computed given the values <departure> and <arrival>, and the variable <LAYOVER>

is to be instantiated with the result.

The main body of a logical procedure is an ordered sequence of calls to the set of defined

logical operators. To express control information, the main body of a logical procedure

may additionally contain any of the following control constructs: while-do, for, repeat-

until, and if-then.

To illustrate how logical procedures are described using the task language, Figure 5 shows

a complete procedure description for the airline reservation tasL

(TASK airlineReservation

(DOMAINSETS
(flight NOMINAL 50)
(origin NOMINAL (pit hou dal ord alb mex gdl qto paz bga))
(destination NOMINAL (pit hou dal ord alb mex gdl qto paz bga))
(departure QUANTITATIVE 100)
(arrival QUANTITATIVE 100)
(layover QUANTITATIVE 100)
(cost QUANTITATIVE 500)
(availability NOMINAL boolean)
(seats ORDINAL UIA 1B 1C 1D 1E 1F ... 24A 24B 24C 24D 24E 24F))

(LOPS
(NLAMBDA findFlightWithOrigin (<FLIGHT> <origin>)
(ASK (Origin <FLIGHT> <origin>)))

(NLAMBDA findDestination (<flight> <DESTINATION>)
(ASK (Destination <flight> <DESTINTATION>)))

(NLAMBDA available? (<flight>)
(ASK (Availability <flight>)))

(NLAMBDA determineDeparture (<flight> <DEPARTURE>)
(ASK (Departure <flight> <DEPARTURE>)))

(NLAMBDA determineArrival (<flight> <ARRIVAL>)
(ASK (Arrival <flight> <ARRIVAL>)))

(NLAMBDA computeLayover (<departure> <arrival> <LAYOVER>)
(DIFFERENCE <departure> <arrival> <LAYOVER>))

(NLAMBDA layoverLessThanX? (<layover> <layover>)

(LESSP <layover> <layover>))
(NLAMBDA determineCost (<flight> <COST>)
(ASK (Cost <flight> <COST>)))

(!TLMBDA addCosts (<cost> <cost> <COST>)
(PLUS <cost> <cost> <COST>))

(NLAMBDA costLessThanX? (<cost> <cost>)
(LESSP <cost> <cost>))

(NLAMBDA findSeat (<flight> <SEAT>)
(ASK (Seat <flight> <SEAT>)))

(NLAMBDA emptySeat? (<seat>)
(ASK (Availability <seat> T)))

Submitted to ACM Transactions on Graphics 12



(PROCEDURZ
(repeat
(if (findFlightWithOrigin FLIGHT 'pit) then
(if (available? flight) then
(findDestination flight DESTINATION)
(determineArrival flight ARRIVAL)
(repeat
(if (findFlightWithOrigin CONNECTING destination) then
(if (available? connecting) then
(determineDeparture connecting DEPARTURE)
(computeLayover departure arrival LAYOVER)
(if (layoverLessThan4? layover) then
(determineCost flight COSTl)
(determineCost connecting COST2)
(addCosts costi cost2 TOTAL)
(if (lessThan500? total) then
(repeat
(findSeat flight SEAT1)

(until (emptySeat? seatl)))
(repeat
(findSeat connecting SEAT2)

(until (emptySeat? seat2)))))))
(until done))))

(until done))

Figure 5: Logical Airline Reservation Procedure

Relationalfacts are used to describe relational information manipulated by a logical

procedure. Relational facts state relations between values drawn from one or more domain

sets. Domain sets are the information types that define the universe of discourse for a task.

Domain sets associate a name, a type of information, and a (possibly infinite) set of data

values of that type that can appear in a relational fact. Three types of domain sets are

allowed in the present model: quantitative, nominal and ordinal [30].

The airline reservation procedure manipulates information from nine domain sets which are

specified in the top portion of Figure 5. Figure 6 shows a set of relational facts that

describe a set of three airline flights.
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(flight flightll7) (cost flight117 179)
(flight flight738) (cost flight738 219)
(flight -light839) (cost flight839 319)
(origin flightl17 pit) (departure flight117 10:00)
(origin flight738 pit) (departure flight738 8:00)
(origin flight839 pit) (departure flight839 9:15)
(destination flight117 hou) (arrival flight117 12:50)
(destination flight738 alb) (arrival flight738 12:00)
(destination flight839 jfk) (arrival flight839 12:05)
(availability flight117 ok)
(availability flight738 ok)
(availability flight839 ok)

Figure 6: Relational Facts for the Airline Reservation Task

4.2 A Catalog of Visual Operators

Visual operators, analogous to logical operators, characterize information-processing

activities performed within the context of a visual display and whose performance depends

on the use of a visual display. Visual operators occur in two forms. Perceptual operators

(POPs) describe mental computation or visual search performed using graphically

expressed information. For example, judging the distance between two objects in a

display, and locating an object having a particular color are perceptual operators. Graphical

operators (GOPs) describe interactive manipulations of the visual objects in a display.

Moving an object from one location to another, and resizing an object to match the size of

another object are examples of graphical operators.

Visual operators are organized around a set of primitive graphical languages available to the

designer of a graphical display [25]. Primitive graphical languages comprise the designer's

resources for encoding information graphically. The set of primitive graphical languages

used in the present model are shown in Table I.

TABLE I
Primitive Graphical Languages

Horizontal Position Color
Vertical Position Labels
Cartesian Position Line Thickness
Height Line Dashing
Width Slope
Line Length Shape
Area Visibility
Connectivity Tabular
Shading
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Associated with each of the primitive graphical languages is a set of perceptual and

graphical operators (POPs and GOPs) that are admitted when the designer of a graphical

representation elects to use one or more of the primitive languages in a graphic. For

example, if we elect to use the Horizontal Position language we admit a family of

perceptual operators (POPs) such as determining the horizontal position of a graphical

object, comparing two or more horizontal positions, and finding the midpoint of an interval

defined by two horizontal positions. Horizontal position also admits a set of graphical

operators (GOPs) such as moving a graphical object from one position to another. Table II
shows the set of perceptual and graphical operators (POPs and GOPs) admitted by the

Horizontal Position and Shading primitive graphical languages.

TABLE II
Perceptual Operators (POPs)

Horizontal Position Shading
determine-horz-pos determine-shade
search-ob ject-at-horz-pos search-object-with-shade
search-any-horz-pos-object search-object -and-shade

veri fy-ob ject-at-horz-pos verify-object-and-shade
horz-coincidence? darker?
left-of? lighter?
right-of? same-shade?
horz-forward-projection find-lightest-shade
horz-backward-project ion find-darkest-shade
determine-horz-distance shade-ob ject
determine-hor z-maximum overlay-shaded-objects
determine-hor z-minimum
find-midpoint-of-horz-interval
f ind-horz-sub-interval
determine-interval
same-size-horz-interval?
smaller-horz-interval?
bigger-horz-interval?
left-of-group?
right-of-group?
group-lines-up?
horz-move
horz-overlay
pop-up-at-horz-position

Performance of a visual operator requires that the information manipulated by the visual

operator is graphically encoded using the primitive graphical language that corresponds to

the operator. For example, performing the determine-horz-distance operator

requires that a graphic encode the information relevant to the operator using graphical

objects meaningfully positioned along a horizontal axis.
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Equivalence Classes for Visual Operators. Every visual operator computes a

function over relational information. An equivalence class of visual operators is a set of

operators that can be shown to compute the same function over relational information.

Table II describes nineteen equivalence classes used to categorize the visual operators in

the catalog. The relational function computed by each equivalence class is formally

specified by an operator schema. The details of operator schemas are discussed below.

TABLE III
Operator Equivalence Classes

SEARCH OPERATORS
search: Search a list of facts for an object with a specified attribute value.
lookup: Search a list of facts about a particular object and report the value of a specified attribute of that

object.
search and lookup: Search a list of facts for any object and report the value of a specified attribute of

that object
verify: Search for a fact stating that a specified object has a specified attribute value.

COMPUTATION OPERATORS
equal: Is one relational value equal to another?
lessthan: Is one ordinal or quantitative value less than another?
greaterthan: Is one ordinal or quantitative value greater than another?
plus: Computes the sum of two numbers.
difference: Computes the difference of two numbers.
times: Computes the product of two numbers.
quotient: Computes the quotient of two numbers.
setplus: Add corresponding elements in two lists of numbers.
setdifference: Subtract corresponding elements in two lists of numbers.
setequal: Apply the equality operator to corresponding elements in a list of relational values.
setlessthan: Apply the less than operator to corresponding elements in a list of relational values.
setgreaterthan: Apply the greater than operator to corresponding elements in a list of relational values.
max: Return the greatest value in a list of quantitative values.
win: Return the smallest value in a list of quantitative values.

GRAPHICAL OPERATORS
tell: Assert a new relational fact and retract any existing facts that contradict the new fact.

Each equivalence class contains visual operators drawn from the visual operator sets

associated with each primitive graphical language. It is interesting to study the members of

each equivalence class to see what types of operators each primitive graphical language

supports. Interesting differences among languages may show why some techniques for

encoding information in a graphic support certain reasoning steps more effectively than

others. Table IV shows the visual operators associated with the search and subtraction

equivalence classes.
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TABi E IV
Members of Two Visual Ljerator Equivalence Classes

search subtraction
search-object-at-horz-pos determine-hor z-dist ance
search-ob ject-at-vert-pos determine-vert-dist ance
search-ob ject-at-cart-pos determine-cart-distance
search-object-with-height determine-height-difference
search-object-with-width determine-width-difference
search-line-with-length determine-difference-in-line-length

search-object-with-area determine-area-di fference
search-connected-object subtract-labels
search-object-with-shading determine-slope-difference
search-object-with-color subtract-table-entries
search-object-with-label
search-line-with-thickness
search-line-with-dashing
search-line-with-slope
search-object-with-shape
search-visible-object
search-entry-in-table

Visual operators are formalized using the same representation scheme used to describe

tasks. For example, the determine-horz-distance operator is formalized as

follows:

(NLAMBDA determine-horz-distance (<horzpos> <horzpos> <DISTANCE>)
(DIFFERENCE <horzpos> <horzpos> <DISTANCE>))

4.3 Substituting Operators

The visual operator substitution algorithm analyzes logical procedures and attempts to

locate visual operators that can be performed by human users more efficiently. This is

accomplished by considering each logical operator (LOP) in a task description and

searching the set of perceptual and graphical operators to locate those POPs and GOPs that

can be shown to compute the same function as the LOP. This property insures that

whatever visual procedure is followed in place of a corresponding logical proced'ure, it is

guaranteed that the user will obtain the same results if the visual procedure is performed

correctly.

Visual operators can qualify as substitutions for logical operators in two ways. Simple

substitutions are those in which a single visual operator can be shown to be equivalent to a

logical operator. Complex substitutions are those in which two or more visual operators

can be packaged together using a rule for the composition of operators [4] to arrive at a

complex visual operator that matches the logical operator.
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Simple substitutions. A single visual operator qualifies as a substitute for a logical
operator if and only if the logical operator can be categorized in the same equivalence class

(see Table EII) as the visual operator. Categorization is determined by attempting to match a

LOP to the operator schemas used to describe each equivalence class. If a LOP is

successfully matched to the schema of an operator class, all visual operators in that class
initially qualify as simple substitutions for the LOP. For example, given the compute-

layover logical operator in the airline reservation procedure:

(NLAMBDA compute-layover (<departure> <arrival> <LAYOVER>)
(ASK (DIFFERENCE <departure> <arrival> <LAYOVER>)))

BOZ attempts to classify the LOP into each of the equivalence classes given in Table III

until a class is found or the set of classes is exhausted. The compute-layover LOP

can be successfully categoriz'd into the subtraction class of search operators. One

member of the subtraction class is the determine-horz-distance operator

associated with the Horizontal Position language:

(NLAMBDA determine-horz-distance (<object> <object> <DISTANCE>)
(ASK (DIFFERENCE <object> <object> <DISTANCE>)))

Since both operators compute the subtraction function, any graphic that represents

departure and arrival times as objects positioned along a horizontal axis will always allow

the user to perform the visual operator and obtain correct answers.

Complex substitutions. The substitution algorithm sometimes exhausts the list of

equivalence classes without successfully categorizing a LOP. One situation in which this

occurs is when a logical search operator contains a relation that takes more arguments than
the relations contained in any single visual search operator. For example, suppose an

operator queries a 3-place relation such as: "find the brother of Heather," or "find the sister

of Alison." This task can be represented using the following single LOP:

(LAMBDA find-certain-relative-of-x? (<person> <PERSON> <relation>)
(ASK (Related <person> <PERSON> <relation>)))

If we consider the schemas for each of the equivalence classes in isolation we note that

none of them formally qualifies as a simple substitution of find-certain-relat ive-
of-x. When impasses of this sort occur, BOZ attempts to match the LOP to complex
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equivalence class schemas constructed from the set of simple class schemas using a

composition of operators rule [4]. Operator composition is defined as follows:

Iff and g are visual operator schemas:

(NLAMBDA f (a,, a2, ... an)
(<meta-command> (<predicate> al a2 ... an)

and

(NLAMBDA g (bl, b 2 , ... , )
(<meta-corunand> (<predicate> bl b 2 ... bin)))

then the composition of f and g, f g, is the schema:

(NLAMBDA f-composition-g (al, ... (<predicate> b, b 2 ... bin), ... a.)
(<meta-conmmand> (<predicate> al (<predicate> b, b2 ... b,) ... a,))

for some argument, ai.

Hence, a composition of two operators is a single operator that uses another operator as

one or more of its arguments.

By adding the rules for defining complex schemas, BOZ can construct more complex

visual operators to match complex logical operators such as the "relatives" examples above.

The following shows how two visual operators, read-label and f ind-connectee,

are composed to produce a match for find-certain-relative-of-X.

(NLAMBDA read-label (<object>)
(ASK (Label (find-connectee <object> <OBJECT>) <LABEL>)))

Figure 7 shows the classifications for the logical operators in the airline reservation task.
Each operator in the task can be matched by a single equivalence class. For each logical

operator in the task, a set of visual operators initially qualify as substititions. For example,

the list of visual operators associated with the search equivalence class are proposed as

substitutions for the findFlightWithOrigin and findSeat operators. Similarly,
the operators of the subtraction class match the description of the computeLayover

operator. It is important to note that BOZ has not yet decided which visual operator to
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choose in each case. Decisions about which visual operators to match with each logical

operator are subject to further constraints computed by the visual data structuring and visual

operator selection components described in Sections 5 and 6. Consequently, what BOZ

has produced at this stage is a space of visual procedures that may be selected according to

additional design criteria.

findFlightWithOrigin (search)
findDestination (lookup)
available? (lookup)
determineDeparture (lookup)
determineArrival (lookup)
computeLayover (subtraction)
layoverLessThanX? (lessthan)
determineCost (lookup)
addCosts (addition)
costLessThanX? (lesathan)
findSeat (search)
emptySeat (lookup)

Figure 7: Operator Classifications for the Aidine Reservation Task

5. VISUAL DATA STRUCTURING

The visual data structuring component is a graphic design technique used to implement the

second type of cognitive advantage of graphical displays: that graphical displays

sometimes allow users to spend less time searching for needed information. The visual

data structuring component examines the information required to perform each logical

operator in a task. Two types of analyses are performed using this information. First, by

noting the domain set that each LOP predicate is defined over, it is determined what

information should appear in a graphic designed to support a task. Second, by analyzing

the relationships between the operators in a task in terms of the domain sets of information

they manipulate, it is determined: (a) how information shared by several operators should

be collected in the same spatial locality and visually encoded using the same primitive

graphical languages; (b) and how information not shared among operators can be

partitioned into distinct displays. The visual data structuring component produces a visual

data structure specification that outlines the displays that will be used to support the task,

the information should appear in each display, and how information is to be grouped

together within each display. The visual data structuring component does not decide how

information is to be graphically encoded in the display. These decisions are made by the

visual operator selection component (Section 6).
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The remainder of the section describes a scheme that analyzes relationships between

operators by tpresenting each operator as a vector defined over a set of domain sets.
Relationships between vectors are determined by identifying common domain sets occuring
in vectors. A complete sketch of all relationships between vectors reveals how information
is to be collected together into graphical objects and partitioned among displays.

5.1 Operator Vectors
Recall that every task description is defined over a finite collection of domain sets. When
taken together, all of the domain sets used by a task description form a feature space. A
feature space is formally defined as the cross product of all domain sets spanned by a task
description. Figure 8 shows an example of a feature space defined over the domain sets
that pertain to the airline reservation task.

[flight] x [origin] x [destination] x [departure] x [arrival] x [layover] x [seat]

Figure 8: Feature Space for the Airline Reservation Task

Each individual operator in a task description computes a relation of the form (p, o, ai,

aj) or (f, ai, ... aj) for some i and j less than or equal to the total number of domain sets

drawn from a feature space, called a vector. Vectors of the first form are called search
vectors. Vectors of the second form are called computation vectors. The first element in a

search vector, p, names the predicate that the operator computes. The second element in a

search vector, o, is known as the object of the vector. The first element in a computation

vector names the function that the operator computes. The remaining elements in either

kind of vector, ai, ... aj, are refered to as attributes.

The operators in the airline reservation task define the following vectors:

1. findFlightWithOrigin = ((flight) x (origin))
2. findDestinafion = ((flight) x (destination))

3. available? = ((flight) x (availability))
4. determineDepartire = ((flight) x (departure))

5. determineArriva = ((flight) x (arrival))

6. deternineCost= ((flight) x (cost))

7. findSeatOnFlight = ((flight) x (seat))

8. emptySeat? =((seat) x (availability))

9. computeLayover = (departure) x (arrival) x (layover))
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10. layoverLessThan. = ((layover) x (layover))

11. addCoss - ((cost))

12. costl.eaThanX? = ((cost))

5.2 Relationships Between Vectors
Relationships between vectors are determined in the following way. Let OP be a set of

operators occuring in a task description, and opi an arbitrary member of OP. Let V(opi) be

the vector implied by an operator opt. The function R(V(opi)) computes four types of

relationships between the vectors V(opi) for all i. Search vectors sv, and sv2 are said to be

conjoint when they contain common objects, o. Search vectors svi = (p, o, al, ... ai) and

SV2 = (p, o, bi, ... bj) are parallel when there exists a computation vector cv = (f, c , ... ck)

such that there exists some cm in a,, ... ai and some cn in bl, ... bj for m and n in (1 ... k).

Search vectors svl and sv2 are said to be orthogonal if some attribute, at, of sv2 appears as

the object, o, in sv1. Search vectors sv1 and sv2 are disjoint when they are neither parallel

or orthogonal.

Relationships between vectors are used to define visual data structures in the following

way. Conjoint vectors group together attributes that pertain to the same object.

Consequently, these attributes should be encoded in a single graphical object in order to

reduce eye movement over the display when searching for that object and its attributes.

Parallel vectors indicate that some visual operator(s) requires that two or more different

objects and their attributes be coordinated in order to draw a particular inference.

Consequently, both objects should appear in the same display and be encoded using the

same primitive graphical language. Disjoint vectors indicate that no visual operator requires

that two or more objects be coordinated to drawn an inference. Vectors of disjoint

operators can be supported in different displays since the information they manipulate is

never used together. Orthogonal vectors indicate part-of relationships between objects.

Information manipulated by orthogonal vectors is presented in separate nested displays.

That is, the user should be able to view the part-of display by making an appropriate

selection in the first display.

Figure 9 shows the relationships between the vectors in the airline reservation task.
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4
availabilityI
seatI
flight - origin destination - departure- arrival - cost - availability 1.

Figure 9: Vector Relationships for the Airline Reservation Task

Since vectors I through 7 are conjoint, information pertaining to the origin, destination,

departure, arrival, cost, and availability of a flight form a single vector and should be

encoded in the same graphical object. Vectors 7 and 8 are also conjoint, hence, all

information about seats should be similarly encoded in the same graphical object. The two

conjoint vectors are orthogonal indicating that each seat object is a part of a flight object.

Hence, seating information should be presented in a separate display that is nested inside

each flight box.

The initial visual data structure specification for the airline task is shown in Figure #.

(NESTED (DISPLAY1 (flight (Origin Destination Departure
Arrival Cost Availability))

(DISPLAY2 (seat (Seat Availability))))

Figure #: Initial Visual Data Structure Specification for the Airline Reservation Task

The predicates that have been grouped with each object are precisely those that will be

encoded in the graphic. Note that information about flight numbers and layovers will not

be encoded in any graphic. This has occured since information about flight numbers is

never used in the task, and facts about layovers are produced as the results of a visual

operator, compute-layover. It is especially important to note that it is not yet been

decided how facts about the origin, destination, departure, etc. of a flight are to be visually

encoded in the graphic. That is, BOZ has not yet associated the names of primitive

graphical languages with the predicate names appearing in the visual data structure

specification. Which primitive graphical languages to associate with each predicate is

determined by the visual operators selected to substitute the logical operators in the task.

6. VISUAL OPERATOR SELECTION
The visual operator selection component chooses a single visual operator to substitute each

logical operator from the list of possibilities generated by the visual operator substitution

component. Selecting a single visual operator to substitute each logical operator

accomplishes two things: (a) reduces the space of possible visual procedures to a single
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visual procedure judged to be the most effective; and (b) allows BOZ to design a single

accompanying graphic that supports human performance of the selected visual procedure.

Three important issues constrain the selection of visual operators. First, since the goal is to

arrive at a visual procedure that minimizes the effort required to correctly complete a task,

for each logical operator we wish to choose that visual operator that is performed most

efficiently and accurately by human users. A first criteria for operator selection involves

estimating the relative performance efficiency and accuracy of the visual operators.

Second, recall that each visual operator is associated with a primitive graphical language

that must be used to graphically encode information manipulated by that operator. A
second criteria when selecting operators is that the representational power of the primitive
graphical language associated with a candidate visual operator is sufficient to encode the
relational facts manipulated by the operator. Third, recall that the visual data structure
specification produced by the visual data structuring component constrains some domain
sets of information to be represented in a single graphical object, or using the same
primitive graphical language. A third criteria for operator selection is that the primitive

graphical languages associated with the selected visual operators be combinable such that
they result in coherent graphical representations that agree with the visual data structure
specification for the task.

6.1 Human Performance Rankings for Visual Operators
The most important criteria when selecting a visual operator is choosing that operator that

allows the human user to obtain the results of the operator most efficiently and accurately.

To determine which of a set of visual operators is likely to be the most performance

effective, BOZ uses a two-tier ranking system that is a generalization of the approach used

in Mackinlay's APT program [25]. The first tier ranks the equivalence classes for

operators appearing in Table III in order of their relative difficulty. For instance, search

operators require more effort to perform than lookup operators. Consequently, they are

always awarded the most efficient visual operators. The second tier ranks the visual

operators within each operator class. For instance, determining the horizontal distance

between two points on a scale is generally performed more efficiently than determining the

difference between two sloped lines. The rankings were generated using a combination of

two methods: (a) theoretical predictions based on a more fine-grained consideration of each

visual operator [5, 33]; and (b) experimental observations of human perceptual task

performance [11, 19, 31, 34]. Table V shows the rankings for visual operator equivalence

classes, and the rankings for the visual operators in each class.
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TABLE V
Ranking of Visual Operators and Equivalence Classes

A. Class Ranking*:
1. plus, difference, quotient, times 5. lessthan, greaterthan
2. verify 6. equal
3. search 7. search and lookup
4. max, min S. lookup

B. Operator Rankings:
SEARCH OPERATORS

search, verify: (Visibility, HorzPos, VertPos, Shape, Connectivity, Shading, Height, Width, Slope,
LineDashing, LineLength, LineThickness, Labels, Area)

lookup, search end lookup: (Shading, Shape, Labels, Height, Width, Slope, LineDashing,
LineThickness, Connectivity, HorzPos. VetPos, LineLength, Area, Visibility)

COMPUTATION OPERATORS
(set)equal: (Labels, Shading, HorzPos, VertPos. Shape, LineDashing, Height, Width, LineThickness,

UneLength, Slope, Connectivity, Visibility, Area)
(set)leaathan, (aet)greaterthon: (Shading, HorzPos, VertPos, Height, Width, Slope, LineThickness,

LineLength, Labels, Connectivity, Shape, LineDashing, Visibility, Areal
(set)plus, (set)tlmea: (Height. Width, LineLength, LineThickness, HorzPos, VertPos, Labels, Slope,

Connectivity, Shading, LineDashing. Shape, Areal
(set)difference, (set)quotlent: (HorzPos, VertPos, Height, Width, LineLength, LineThickness, Labels,

Connectivity, Slope. Area, Shading, Shape)
max, min: (Visibility, HorzPos, VertPos, Connectivity, Shading, Height, Width, Shape, LineDashing. Slope,
LineLength, LineThickness, Labels, Area)

6.2 Expressiveness
The second criterion used during operator selection is that a selected visual operator must

be associated with a primitive graphical language that is powerful enough to encode the

relational facts manipulated by that operator. For example, even though the search-

shaded-object is the most efficiently performed search operator, it cannot be selected

to substitute the f indFlightWithOrigin logical operator since the number of different

cities exceeds the number of different shades. When a selected visual operator fails to meet

the expressiveness needs of a logical operator it is disqualified and the next highest ranking

visual operator is considered. The interested reader can consult Mackinlay [25] for a

thorough analysis of primitive graphical language expressiveness. BOZ, like all other

recent presentation systems, adopts Mackinlay's mechanism for deciding expressiveness.

6.3 Operator ComblinabIlity

The third criterion for operator selection concerns the combinability of visual operators.

The following example illustrates the notion of combinability of visual operators. Suppose

we have selected the stack-heights visual operator to substitute the addCosts

logical operator in the airline reservation task and are currently selecting a visual operator to

substitute the findFlightWithorigin operator. Suppose that we are currently
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considering the determine-slope visual operator as a candidate selection. Recall that

the visual data structuring component has indicated that the information relevant to these

two operators should be encoded in the same graphical object. Every visual operator has
associated with it a graphical presentation object that is used to graphically encode the

information manipulated by that object. For example, the graphical presentation object for

the stack-heights and determine-slope operators are <rectangle> and <line>,

respectively. Note that the information relevant to the two operators cannot be encoded in

the same graphical object. That is, it is meaningless to speak of the slope of a rectangle or

the height of a line. Consequently, these two operators are not combinable and we must
disqualify determine-slope as a candiate for selection. Now suppose we move on

and consider the read-label visual operator. Note that the two operators are indeed

combinable. Even though the graphical presentation object for the read-label operator

is <string> and the graphical presentation object for the stack-heights operator is

<rectangle>, the two graphical objects can be combined to form a labeled rectangle.

The next two sections describe how the set of graphical presentation objects and a set Qf

graphical object composition rules are used by BOZ to decide combinability of visual

operators.

6.3.1 Graphical Presentation Objects
Each primitive graphical language has a graphical presentation object associated with it,

either: <point>, <line>, <rectangle>, <polygon>, or <string>. The graphical presentation

objects for a primitive graphical language are those graphical objects that support the

performance of the visual operators that are associated with that graphical language. For

example, the graphical presentation object for the Height primitive graphical language is
<rectangle>. Note that only this object makes the visual operators associated with the

Height language meaningful. That is, it would be impossible to determine the height of a

point since a point by definition has no spatial extent.

Table VI lists the graphical presentation objects associated with each of the primitive

graphical languages.
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TABLE VI
Graphical Presentation Objects for the Primitive Graphical Languages

Horizontal Position = <point>
Vertical Position - <point>
Cartesian Position - <point>
Height - <rectangle>
Width - <rectangle>
Line Length - <line>
Area - <polygon>
Connectivity - <line>, <point>
Shading a <polygon>, <rectangle>
Labels - <string>
Color - <point>, <line>, <rectangle>, <polygon>
Line Thickness - <line>, <rectangle>, <polygon>
Line Dashing a <line>, <rectangle>, <polygon>
Slope - <line>
Shape - <polygon>
Visibility - <point>, <line>, <rectangle>, <polygon>, <string>

The first step in deciding visual operator combinability is to determine the graphical

presentation object of a candidate visual operator.

6.3.2 Composition Rules for Graphical Presentation Objects
The second step in deciding operator combinability is to compare the graphical presentation

object of the visual operator currently being considered with the presentation objects of all

previously selected operators that appear in the same vector in the visual data structure

specification. If the graphical presentation object matches those of the previously chosen

operators then the new operator is combinable. If the presentation object does not match,

BOZ attempts to show them combinable using the set of composition rules for graphical

objects given in Table VII.
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TABLE V111
Cormosftion Rules for Graphical Presentation Objects

mark Composition Rules: Axis Composition Rules:
RULE 1: <poib + <Point> - cpoint> RULE 12: <horz-axis, + <horz-axis> - <horz-axis,
RULE 2: <cpoin> + dine> - 4Ine> RULE 13: <vert-axis, + cvot-axis> - vert-axis,
RULE 3: <line> + Jlne. - <line> RULE 14: diorz-axis, + <vert-axis, - .cart-axis>
RULE 4: -crectangle> + <cpoinb> -a ctangle>.
RULE 5: <rsctangle> + <rectangle>' - <rectangle> Network Composition Rules:
RULE 6: <polygon> + <point> - <polygon> RULE IS: <node-link-nodg, + <node-link-node>
RULE 7: -cpolygon> + -cpolygon> - -cpolygon> <node-link-node>
RULE 8: <label> + dIabeb- - <label,
RULE 9: dabe6 + -dine, - dine>
RULE 10: .dabel> + -credangle> - -crectangle,
RULE 11: clabel> + <polygon> - <polygon>

Each composition rule describes how a set of individual presentation objects can be legally
composed to form a single presentation object that inherits all of the graphical properties of
the constituent objects. For any new visual operator and set of previously selected
operators, the new operator is combinable if and only if a rule can be found that maps the
set of presentation objects into another legal presentation object.

Applying the operator selection strategy to the set of possible visual operators obtained for
the airline reservation procedure yields the visual procedure shown in Figure 11. Note that
every logical operator has been replaced with a single visual operator.

(TASK airlineReservation

(PROCEDURE
(repeat
(if (search-object-with-label FLIGHT 'pit) then
(if (shaded? flight) then
(read-label flight DESTINATION)
(determine-horz-pos flight ARRIVAL)
(repeat
(if (search-object-with-label CONNECTING destination) then
(if (shaded? connecting) then
(determine-horz-pos connecting DEPARTURE)
(determine-horz-distance departure arrival LAYOVER)
(if (sraller-horz-interval? layover) then
(determine-height flight COSTi)
(determine-height connecting COST2)
(stack-heights costi cost2 TOTAL)
(if (shorter? total) then
(repeat
(search-object-with-label flight SEATI)

(until (NOT (shaded? seatl)
(repeat
(search-object-with-label connecting SEAT2)

(until (NOT (shaded? seat2))))
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(until done))))
(until done))

Figure 11: The Final Visual Airline Reservation Procedure

Figure 12 shows the final visual data structure specification for the airline reservation task

after the composition rules have been applied.

(NESTED (DISPLAY1 (flight ((Origin Labels) (Destination Labels)
(Departure HorzPos) (Arrival HorzPos)
(Cost Height) (Availability Shading))
<rectangle>)

(DISPLAY2 (seat ((Availability Shading)) <rectangle>)))

Figure 12: The Final Visual Data Structure Specification for the Airline Reservation Task

Note that each predicate appearing in the visual data structure specification has been

associated with a single primitive graphical langauge. In each case the primitive graphical

langauge chosen is precisely that language associated with the visual operators that have

been selected to manipulate that type of information.

6.4 Limitations of Automated Visual Operator Selection

It is important to note that there exists no algorithmic strategy that always chooses the most

efficiently or accurately performed visual operator, including those based on experimental

observations and detailed theoretical predictions. I am aware of no experimental result of

people using graphics that has been successfully generalized across any one of: user [20],

level of skill [16], practice [29], task [18], particular display used [24], age [91, culture

[17], or even social situation [1]! Each of these factors have been shown to introduce
variance strong enough to overturn the results of any particular experiment, making strong

generalizations of these results inappropriate. What we can hope to achieve in an

automated graphic design tool is a codified set of operational design principles that. perform

satisfactorily across interesting tasks and graphics.

Many task domains make use of domain-specific graphic conventions for which

practitioners of that domain have acquired practiced skill in using. It is not always the case

that these conventions were chosen based on which conventions were the most cognitively

efficient, but rather what informally seemed to comprise a useful notation at the time the
graphic convention was designed. Without specific knowledge of a problem domain, an

automated graphic design tool is unable to identify and select operators that correspond to

existing graphic conventions and this is a second limitation of automated graphic design.
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BOZ, like APT [25], allows the designer to intervene and manually select visual operators

in order to support existing conventions.

The human performance efficiency of a visual operator may be sensitive to the particular
data on which the operator is performed. For example, judging the distance between two
points on scale that are aligned three units away from one another appears to be easier than
if the points are aligned, say, thirty-nine units apart. This phenomenon occurs because
some input data allow the user to exploit more low-level perceptual capabilities such as
subitizing [21]. A more reliable visual operator ranking system might be achieved by
making the set of rankings functionally dependent on the set of relational facts to be
displayed. That is, rather than using a fixed set of operator rankings, a different set of
rankings would be computed for each different set of relational facts. The usefulness of
such a scheme, along with its computational feasability, is an open question.

BOZ's visual operator selection component proceeds under the assumption that the time to
perform a visual operator is unaffecied by any other visual operators that are performed
before or after that operator. That is, the time to perform a visual operator is assumed to be
context-independent. There are two ways in which this assumption may be invalidated.
First, while the question of parallel perceptual task performance remains open for debate,
experimental observations suggest that human user are sometimes able to obtain the results
of several visual operators in a time less than the sum of the observed performance times
for each individual operator [33]. Furthermore, researchers have gained a partial
understanding of which combinations of visual operators exhibit this property.
Combinations of visual operators that achieve this property result in a greater savings in
performance efficiency. Casner and Larkin [8] explore the topic of operator parallelization
in more detail. Second, experimental observations of users in other task domains such as
typing suggest that certain combinations of operators may sometimes result in a
performance time that is greater that the sum of the individual performance times [35].

7. VISUAL DISPLAY RENDERING

The rendering component uses the visual data structure specification to translate relational
facts submitted with the logical procedure to visual facts. Visual facts are graphical
encodings of the original set of relational facts, presented using a graphic design that agrees
precisely with the visual data structure specification for the task. The rendering component

produces a fully rendered graphical display of the visual facts. Graphical displays
produced by the rendering component support interactive manipulations of the graphical
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objects appearing in the display, allowing users to effect changes in the internally stored

relational facis.by making changes to the visually displayed facts.

7.1 Translating Logical Facts to Structured Visual Facts
A prerequisite to graphically rendering arbitrary sets of relational facts on the computer

screen is a notation for representing visual facts that is equivalent to the notation used to

express relational facts. To accomplish this, Mackinlay's formalism for expressing visual

facts is used, and this has been shown to be informationally equivalent to a logical

representation of the same relational information [25]. Mackinlay's formulation allows

relational facts to be expressed using each of the primitive graphical languages given in

Table I. Visual facts expressed in a primitive graphical language take the following form:

(PGL <OBJECT> <VALUE>). For example, the facts in Figure 13 describe a square-shaped

graphical object that is shaded black and positioned along a horizontal axis.

(object objOOl)
(shape objOOl square)
(horzpos objOOl 6) I I I I I I
(shading obJO01 black) 0 2 4 6 a 10

Figure 13: Example Visual Facts

Figure 14 shows how relational facts (left side) about airline flights are renamed to

graphical facts (right side) when the mapping given in the visual data structure specification

is applied.

(origin flight117 pit) (label flightll7 pit)
(origin flight239 hou) (label flight239 hou)
(destination flightll7 hou) (label flightll7 hou)
(destination flight239 mex) (label flight239 mex)
(departure flightll7 10:00) (horzpos flightll7 10)
(departure flight239 15:00) (horzpos flight239 15)
(arrival flightll7 12:50) (horzpos flightll7 12.83)
(arrival flight239 17:15) (horzpos flight239 17.25)
(cost flightll7 179) (height flightll7 1.79)
(cost flight239 239) (height flight239 2.39)
(availability flightll7 ok) (shading flightll7 whiteshade)
(availability flight239 ok) (shading flight239 whiteshade)

Figure 14: Translated Airline Reservation Facts

A final notation is needed for expressing collections of visual facts whose structure agrees

with the visual data structure specification for the task. A structured fact corresponds to the
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"gestalt wholes" defined by the visual data structure specification. For example, the

following structured facts show how the visual facts in Figure 14 are structured according

to the visual data structure specification for the airline task given in Figure 12.

(((labels flightll7 pittsburgh)
(labels flightll7 hou)
(horzpos flightll7 10)
(horzpos flightll7 12.83)
(height flightll7 1.79)
(shading flightll7 whiteshade))

((labels flight239 hou)
(labels flight239 mex)
(horzpos flight239 15.00)
(horzpos flight239 17.25)
(height flight239 2.39)
(shading flight239 whiteshade)))

7.2 Rendering Visual Facts
The rendering component automatically displays arbitrary sets of structured visual facts on
the computer screen. This is accomplished by considered each structured fact, determining
the form in which it is to be presented by consulting the visual data structure specification,
and rendering the image of the fact on the screen. The rendering algorithm uses an object-
oriented approach to rendering graphical presentation objects and their graphical properties.
For every type of graphical presentation object (i.e., <point>, <line>, <rectangle>,
<polygon>, and <string>) there exists a corresponding display object that can be rendered
on the screen. To expedite the rendering of display objects, drawing primitives are used to
create images rather than bitmap displays. Display objects can inherit one or more of a set

of display methods that render the graphical properties of a display object. Display
methods are defined for each of the primitive graphical languages in Table I. For displays
that do not use horizontal and vertical position to encode information, a simple
displacement scheme is used to avoid occlusion of display objects by other display objects.
Scales and guidelines are automatically computed, drawn, and labeled using the
DOMAINSETS field in the logical procedure description. Fonts have been chosen arbitrarily
and standardized. Nested graphics are implemented by mouse-sensitive buttons that are
always placed in the lower left corner in rectangles and polygons, and immediately on top
of points and lines. Customized methods are automatically attached to the buttons that
cause the nested graphic to be rendered when the button is selected.

Figure 15 shows a fully rendered set of visual airline facts. As specified by the visual data

structure specification, the display consists of a single type of graphical object (i.e., a flight
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box) that inherits four graphical properties (i.e., horizontal posi.on, shading, height, and

labels).

Figure 15 here

Selecting the seats button for any flight causes the nested seating chart for that flight to be

rendered. A rendered seating chart is shown in Figure 16.

Figure 16 here

The graphics generated by the rendering component support two-way interactions between

sets of relational facts and their visual images. In addition to being able to effect changes in

a graphical display through manipulations of the internally-stored relational facts, the
graphical objects in the displays can be manipulated by the user to effect changes in the set

of stored relational facts. For example, the uppqr, left-most flight box in the display in

Figure 15 indicates that there is flight from PIT to JFK leaving at 11:30am with no

available seats costing $400. The user may simultaneously change the graphical and

internal representation of this information by simply mouse-selecting the flight box and

moving it to a new location, changing its shading, or increasing or decreasing its height.

Casner [6] generalizes this technique in a tool that allows users to create customized

diagramming languages that can be attached to and used to manipulate internally stored data

and knowledge representation structures.

7.3 Limitations of Automated Rendering
There are several important limitations of the automated rendering component. First, the

rendering component is incapable of rendering displays that make use of domain-specific

conventions. For example, airline seating charts typically orient the aircraft pointing east,

lower numbered seats appearing the right and higher number seats to the left. Since BOZ's

rendering component has no knowledge of this convention, the seats are arranged in

increasing order from left to right as are the hours along the time scale. Second, many
d.plays depict realistic itiformation such as spatial arrangements and shapes that do not

encode information vital to the task at hand but preserve many features of a real-world

artifact in an artificial representation. For example, airline seating charts typically depict the

aisle separating the two halves of the plane. Some seating charts also use chaif-shaped
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icons to represent seats instead of the generic box-shape used in BOZ's display. BOZ of

course has no knowledge of these conventions. Note that despite these two limitations it is

still possible to locate any seat. What may be lost is a familiarity and practice that users

may have already acquired using other conventions.

8. COGNITIVE ANALYSIS OF THE AIRLINE GRAPHICS

Table vI summarizes the potential cognitive efficiencies of the airline reservation

graphics. The efficiencies occur in two forms that agree with Larkin and Simon's

theoretical analysis and the design goals of BOZ: (a) ways of substituting efficient visual
operators in place of more demanding logical operators; and (b) ways of reducing eye

movement and the number of items considered when searching for needed information.

TABLE VIII
Predicted Cognitive Efficiencies of the Airline Graphic

Operator Substitutions
Substitutes a distance judgement (determine-horz-pos) in place of subtracting numerically expressed
departure and arrival times (compute-layover).

Substitutes a shade judgement (shaded?) for reading the words "ok" and "full" (available?).

Substitutes judging the combined heights of two flight boxes (stack-heights) for adding two
numerically expressed costs (addCosts).

Search Advantages
Eliminates eye movements when looking up time, city, cost, and availability information since this
information is represented in the same spatial locality (a single flight box).

Allows users to limit their search for connecting flights to only those flights that appear to the right of the
originating flight.

Since shading can be processed pre-attentively, users may immediately exclude from their search any flight
square that has no available seats.

Allows users to immediately rule out "tall" flights from their search since these are likely to exceed the
$500 limit.

When looking for an available seat, users can immediately eliminate shaded seats. Users can also restrict
their search to window or aisle seats by following simple eye movement patterns.

It is important to note that the hypothesized advantages of any BOZ-designed graphic

depend on the user understanding and being able to perform the visual procedure supported
by that graphic. Whether or not real users can or actually do follow the designed visual

procedure, and the extent to which the predicted efficiency advantages are reflected in

users' performance is an empirical question to which we now turn our attention.
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9. USERS' PERFORMANCE WITH THE AIRLINE GRAPHIC

Casner and Larkin [7] describes an experimental study designed to determine the extent to

which the hypothesized cognitive efficiency advantages of the airline graphic shown in

Table VIII were actually reflected in users' performance. To better understand the

contribution made by each hypothesized efficiency advantage, a sequence of four graphics
was designed in which each successive graphic provided an additional opportunity to

substitute a visual for logical operator, and an additional opportunity to reduce visual

search. The final dispiay in the sequence contained all of the efficiency advantages listed in

Table VIm (excepting those pertaining to the seating chart display). The four experimental

graphics, herein called Graphics 1, 2, 3, and 4, are shown in Figure 17.

Figure 17 here

Response times were collected from eight participants who performed the airline

reservation task using the four graphics a total of ten times each (forty trials total). Users

completed the task after receiving an explanation of the conventions used in each graphic

and one practice trial. The order in which the graphics were presented to the users was

varied systematically to evenly distribute effects due to learning and practice.

Response 20

Time
(seconds) Is

10 0
X

Varlance of S
Response 5

Time x
X ~ Xx x

0
1 2 3 4

Display Used

Figure 18: User's Performance Times for the Airline Reservation Task

The results shown in Figure 18 indicate significant differences in response times between

Graphics I and 2, and between Graphics 2 and 3, but not between Graphics 3 and 4. The

data suggest that time scale encoding used in Graphic 2 (and also in Graphics 3 and 4)

reduced the amount of time required to locate two connecting flights, and to determine

whether or not two flights obey the layover constraint. Allowing users to perform the
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perceptual operator of determining the shade of a flight box (Graphic 2) also resulted in a

significant savings. The perceptual task of determining whether or not two flights obey the

cost constraint by judging the heights of the flight squares did not result in any reliable

savings over the task of adding the two numbers, or in narrowing down the search space of

flights to consider. An analysis of the standard deviations in response times suggests that

users exhibited significantly more stable performance between Graphics 1, 2, and 3 in that

order.

Our next step was to understand how users obtained the efficiency savings we observed.

We ran a regression analysis on the number of times each operator must be performed

using each graphic, the number of flight boxes searched, and the observed user response

times. We obtained the best fitting models when each graphic was combined with the

procedures that used all of the operator substitutions and search reductions that were

applicable to that graphic. This suggests that for each graphic, users took advantage of all

of the operator substitutions and search reductions that were possible with that graphic.

The beta-coefficients in the regression model yielded estimates on.performance time for

several of the individual visual and logical operators.

* The time required to fix the eye on each item in a graphic was uniformly about 330

milliseconds for all four graphics.

- Visually estimating layovers (determine-horz -distance) using Graphics

2, 3, and 4 proceeded about 2 seconds faster than subtracting the numerically

expressed times.

* Judging the combined heights of two flight boxes (stack-heights) in Graphic
4 was negligibly 100 to 300 milliseconds slower than adding the numerically

expressed costs.

The savings gained through substitution of visual for logical operators and use of search

reductions match well with the global reductions observed in overall response times.

Overall the results agree with users' comments after using all four graphics: that Graphics

3 and 4 were the most effective. The interested reader can find details of the experimental

design and methodology in Casner and Larkin [7].
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10. GENERAL DISCUSSION

The research described above proposes a task-analytic approach to the design of

information graphics in which graphics are viewed as perceptually and graphically

manipulated data structures that help streamline task performance much In the way that

abstract data structures help expedite abstract computational processes. The important

distinction made in task-based graphic design is that the effective use of visual data

structures, as with abstract data structures, depends on designing the right structure for a

given task. That is, it is inappropriate to say that a particular graphic is the best choice or

that it is useful in general. Consequently, the design methodology embodied in BOZ

proceeds by analyzing the operators that comprise a user task and generating

informationally equivalent visual tasks that can be performed more efficiently by humans.

The design of accompanying visual displays of information is targeted primarily at

supporting efficient and accurate human performance of the visual task. The examples and

experimental results show how the task-analytic approach can be successfully applied to

designing effective visual tasks and displays that provide two types of cognitive efficiency

advantages: (1) allowing users to substitute perceptual inferences in place of more

demanding logical inferences; and (2) reducing user's search for needed information.

Real-Time Automated Graphical Presentation. Aside from an algorithmic

specification of a design theory for information graphics, BOZ appears potentially useful as

a tool for the automated design and generation of graphical displays in computer

information systems. However, two limitations of the present model prevent BOZ's

current use in real-time applications. First, the descriptions of logical procedures required

by BOZ as input must presently be hand-generated. A future research topic is to investigate

ways of automatically generating procedural descriptions, elimintating the need for human

intervention. SAGE [27] uses a discourse processor that allows descriptions of simple

operators to be generated by analyzing simple natural language queries made by the user.

However, this approach is unable to generate descriptions of complex procedures defined

using collections of many operators. Second, while the runtime complexity of BOZ may

theoretically be able to meet the demands of on-line information systems, the present

implementation fails to produce graphics in a time that would be considered acceptable by

computer users. The rendering component is particularly slow for graphics containing

many graphical objects. The search complexity for BOZ's visual operator substitution

component is presently: Toperator substitution m n * c, where n is the number of logical

operators appearing in a procedure, and c is the number of possible operator classes that

each logical operator must be matched against. The Xerox implementation of BOZ required
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about nine seconds to classify the airline reservation task operators as shown in Figure 7.

BOZ's visuat data structuring algorithm is linear in the number of logical operators, n, and

domain sets, d.: Tdm sm'ucwring = n * d. BOZ required about two seconds to design the

initial visual data structure shown in Figure 10. The visual operator selection component

runs nlog(n) in the number of logical operators: Toar selection = n * s, where s is the

number of operators that have been selected thus far. The visual operator selection

component required seven seconds to select the visual procedure and data structure shown
in Figures I I and 12. The object-oriented rendering component is linear in the number of

structured facts to be presented, f, and the number of primitive graphical languages, p,

appearing in each structured fact: Tenditon = f * p. The rendering component required

approximately twelve seconds to render the flights display in Figure 15 and approximately

one minute fifteen seconds to generate the seating chart display in Figure 16.

Overall, BOZ designed both displays in about eighteen seconds, rendering the flights and

seating charts displays after thirty seconds and one minute forty-five seconds, respectively.

BOZ's current runtime does not fall within an acceptable standard for real-time data
presentation. A future research topic is to investigate ways of making BOZ operate more

efficiently. The rendering component is currently being reimplemented on a Macintosh II

equipped with ROM-stored QUICKDRAW" m drawing primitives to investigate the effects

of increased hardware and graphics support.

Executable Logical and Visual Procedures. BOZ contains an additional feature that

allows the logical procedures created by the designer, and the visual procedures produced

by BOZ to be compiled into executable functions. These executable functions manipulate

databases of logical and visual facts such as those shown in Figures 6 and 14. This feature

allows alternative procedures to be executed while the number of operator firings and items

searched are counted for any combination of logical or visual procedure and graphic.

These measures can be used to obtain detailed quantitative predictions on the effectiveness

of any procedure and graphic produced by BOZ, and may avoid the need to perform time-

consuming experimental studies with real users such as the one described in Section 9.

Casner and Larkin [8] use the simulation tool to explore other cognitive advantages of

graphical display-based task performance and problem solving, and to better understand the

details of how reductions in mental computation and visual search are obtained through the

use of graphical displays.
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Discovering New Design Principles. BOZ may also be useful for explaining why

existing graphic designs are successful, and to help discover clever design properties

enjoyed by existing graphics that can be later incorporated into BOZ's design algorithm.

Existing graphic designs can be analyzed by describing the tasks for which a graphic is

known to be useful and showing that the design is such that it allows the users to perform

computationally interesting visual procedures. Consider the graphical representation used

in the calculus for vectors in the plane, shown in Figure 19.

Figure X: Vectors in the Plane

Vectors use lines in the plane to represent forces acting on a body. The magnitude of a

force is represented by the length of a vector line. The direction of a force is represented by

the slope of a vector line. The surprising feature of vector representations is that they do

not use the spatial position of a vector to encode information. The spatial position primitive

graphical languages provide the most powerful and efficiently performed visual operators

yet they are not used in the vector representation. The decision to keep the spatial position

primitive languages "in reserve" (at some cost in cognitive efficiency', pays o-ff when when

the task of adding together vectors is introduced. Leaving the spatial position languages

free of interpretation allows us to move vectors around in the plane and be sure that the

vectors still represent the same information. This freedom allows us to arrange vectors

such that the beginning of one vector coincides with the end of another vector as shown in

the right side of Figure 19. We can now draw a line connecting the beginning of the first
vector and the end of the second vector. It is easily shown that the vector added as an

annotation represents the sum of the original two vectors. Summing together vectors

without the benefit of the graphical representation of course requires more sophisticated

mathematical knowledge and procedures.

The analysis of the design used for vectors suggests the following general design principle:

sometimes a sacrifice in one aspect of a design can lead to greater gains in another aspect of

the same design. The analysis of the vector representation has provided an interesting

design principle that falls outside of BOZ's capabilities, and su ,gests a promising new idea

to investigate that may be generalizable across many tasks and graphic designs.
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